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FOREWORD
This document presents basic data to be used in assessing the 

environmental impacts of deep-sea mining for nodules containing manganese, 
copper, nickel, and cobalt. It supplements information presented in NOAA 
Technical Report ERL 290-0D 11, "The Environmental Impacts of Deep-Sea 
Mining. Progress Report," May 1973.

Originals of photographs reproduced herein are available for inspec
tion at the Marine EcoSystems Analysis Program Office (MESA), ERL, Boulder, 
CO., 80302.

Charles G. Gunnerson 
Director, MESA Program Office
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1 INTRODUCTION
1.1 Environmental Protection and Safety

There is no doubt that environmental considerations 
and arguments--with or without sound technical basis--will 
be used in international legal, political and economic deli
berations concerning the exploitation of the mineral resources 
of the sea floor, as has already been the case in the United 
Nations Seabed Committee.

Several mining tests have already been completed, many 
more are in preparation and at least one full-scale mining 
vessel is undergoing sea-trials. The prospect of imminent 
extensive deep-sea mining requires serious consideration of 
the environmental impact of this activity, since it could 
affect the benthic and pelagic environments. It is essential 
that the environmental implications of manganese-nodule mining 
from the deep-sea floor be thoroughly understood, evaluated 
and documented before such mining is attempted on a large 
scale.

The proposed mining of manganese nodules from the deep- 
ocean floor has triggered a perhaps unique collaboration in 
the United States between the government, mining industry, 
academic institutions, and public-interest groups to deter
mine the environmental impact of the proposed mining opera
tions before their start. This is in great contrast to other 
important industrial developments, where environmental con
cerns have usually only arisen after—sometimes serious--



damage to the environment. By taking preventive action, it 

should be possible to reduce greatly or completely eliminate 
potential environmental hazards due to the mining operations.

Collaboration between government, industry and academia to 
ensure safe deep-sea mining methods could lead to the deve
lopment of mining techniques with beneficial environmental 
effects.

The emphasis of this study is on the consideration of the 
impact of manganese-nodule mining on the marine environment.
The metallurgical operations to extract the valuable metals 
such as copper, nickel and cobalt from manganese nodules should 
be comparable in their environmental effects to land-based 
operations of a similar nature. However, if the ore proces
sing takes place at sea, special precautions would have to be 
taken for the discharge of waste materials. Since secondary 
land use (including land-based processing plants and tailings 
disposal sites) and social and demographic patterns affected 
by marine mining or ore processing are not exclusive problems 
of deep-sea mining, they are outside the scope of this report. 
Similarly, the environmental impacts of alternative means of 
obtaining metal ores and the environmental analysis of the 
utilization of minerals obtained from the marine environment 
are not considered here. It is recognized that there will be 
environmental impact associated with on-shore activities that 
accompany off-shore mining. Some of these will be associated 
with the transport of minerals (marine terminals and support 
facilities, stock-piling of materials, truck movements, etc.) 
and others will be associated with the processing of the
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minerals. Assessment of the environmental impacts of both 

of these types of activities should proceed before there is 

a move to license full-scale off-shore mining. However, 
since regulation of this kind of activity falls under the 
jurisdiction of the coastal states, this work does not 
address this facet of the off-shore mining operation.

Manganese nodule deposits of current commercial interest 
lie mainly on top of the sediments covering the ocean bottom 
underlying oceanic water masses of very low biological pro
ductivity; therefore, no deep penetration of the sediments 
will be required to retrieve them. Manganese nodules are 
rare in areas where there is rapid sedimentation, e.g., on 
those parts of the sea floor underlying areas of high biolo
gical productivity in the water column, giving rise to rapid 

sedimentation of biogenic oozes.
The areas to be mined will be limited, therefore, by the 

distribution of manganese nodules on the ocean floor and by 
technical and economic factors governing their retrieval from 
the depths. Our study area, therefore, was located on a 
relatively flat, sediment-covered part of the ocean floor 
with a high density of manganese nodules on, or very close 

to, the surface of the sediment.
1.1.1 Mining Methods

In the mining operation, the manganese nodules 
are collected from the ocean floor, usually from great depths, 
and transported through the water column to a surface vessel. 
The collection of manganese nodules will result in the

3



removal and redistribution of sediments and benthic organisms 

on the ocean floor. In all mining operations, it is likely that 

there will be considerable resuspension of sedimentary 

materials in the near-bottom waters. Daring the mining ope

ration, a sediment plume will be generated in and around the 

mining head which will settle out in the general area of the 

sea bed which has been mined. The amount of scatter of the 

particles will depend upon the design of the mining head, its 
velocity, Stoke's Law, and prevailing ocean currents.

An example of the maximum amount of sea-bed soil which 

may be disturbed as a result of ocean mining can be computed 

using the following assumptions:
Nodule concentration = 2 lbs/ft^

Mining rate = 5000 tons/day

Mining swath = 50 ft

Depth of swath = 4 inches

Velocity = 1.25 ft/sec

This gives, on a daily basis, a soil pick-up of 1.7 x 10b 
ft®, along a 19-mile swath of 50 ft width. For a 30C-day 

year, this equals a 1.4 x 10^ m® soil disturbance. This 

yearly rate is approximately equal to slumping due to tur

bidity currents at the mouth of the world's large rivers 

when the rivers are flooding and wave-stirring is at a maximum. 

For example, the Mississippi River Delta sediment transfer 
is estimated to be 2 x 10® m®/yr (Shepard, 1973) .

The self-propelled mining equipment has an interaction 
with the sea bed to a much greater extent than towed equipment.
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The self-propelled approach suggests some form of mobility 

and trafficability which, in turn, must consider wheels, 

tracks, or other forms of propulsion. This disturbance of 

the sea bed is probably more uniform with a self-propelled 

approach than with a towed dredge, but also is more likely 
to disturb a greater volume of -sea bed when both are operating 

properly; this is primarily due to swath width and burial 

depth of the propulsion equipment. As opposed to nodule 
pick-up and mud removal, the mobility function will compress 
the sea bed along with stirring up particles. Using the 

assumptions previously given, i.e., that of a 5000-tons/day 

unit traveling 19 miles/day, and further assuming:

One 72-inch wide track per side

Burial depth of 36 inches
the amount of disturbed soil per day is 7 x 10^ f t ^, or

2.1 x 10^ ft^/year for a 300-day year.

All of the different techniques under consideration for 

nodule mining will try to avoid as much as possible the 

retrieval of sediments with the nodules. The continuous- 

line-bucket (CLB) system tested in the Pacific in 1971 and 

1972, used buckets of 40-cm depth with a maximum penetration 

into the sediment of about 20 cm, but probably much less in 
practice (Masuda, Cruicksnank and Mero, 1971). The other 

systems propose to utilize bottom-gathering devices connected 

to hydraulic or airlift pumping systems to transport the 
nodules to the surface through a pipeline (Welling, 1972; 

Garland and Hagerty, 1972). All of these devices have com-
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ponents which contact the ocean bottom to make a first sepa

ration of the nodules from the surrounding sediment. This 

first separation is achieved by a chute with water jets, 

heavy spring-rake tines, a radial tooth roller, harrow 

blades and water jets, or spaced comb teeth. Many of the 
machine concepts employ adjustable collecting elements so 

that changes can be made during the mining operation to 

accommodate variations in the nodule deposit and sediment 

characteristics. A second important feature of all of the 

collecting devices is a controlled digging depth into the 

ocean bottom, as interest is usually centered within the 

upper few inches of the sediment.

1.1.2 Effects of Mining on the Sea Floor

and Near-Bottom Water Mass

It is obviously in the interest of a mining 

operation to separate nodules from sediment as well as 
possible on the ocean floor and to disturb the sediment as 

little as possible where compatible with efficient collection 
of the nodules. However, it is equally obvious that signi
ficant disturbance of the sediment and the sessile benthic 

organisms, which cannot escape the oncoming dredge, will 

occur. A cloud of sediment will undoubtedly be stirred up 
in the near-bottom water layers. The distribution and 

resedimentation of the stirred-up particles will obviously 

be governed by their density and other sedimentation charac
teristics as well as by the near-bottom currents. This 

resuspension of sedimentary materials will influence the 

near-bottom water mass, certain areas of the ocean floor
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from which sediments have been removed, as well as other 

areas where redeposition of the sediment will occur.
The near-bottom water mass may retain in solution certain 

compounds leached out from the sediment or from the inter 

stitial water. For instance, in manganese-nodule areas, it. 

is conceivable that the trace-metal content of the near 
bottom water could be increased by the resuspension of sedi

ment. This enrichment of the near-bottom water in certain 

compounds may have stimulatory or inhibitory effects on 
organisms living in the deep ocean near the sea floor. On 
the whole, important effects seem unlikely, both in view of 

the relatively low density of the near-bottom prowlers and 

the fact that the sedimentary material arrived on the sea 

floor as a result of natural sedimentation processes. It 

has been argued that the redistribution of sediment on the 

ocean floor resulting from natural phenomena exceeds by many 

orders of magnitude on a worldwide scale, any disturbances 
caused by all the dredges ever likely to be utilized in 

deep-sea mining (Welling, 1972). however, it remains equally 
clear that local disturbance of sediment may have a certain 

impact on the deep-sea fauna and flora. This is particularly 

the case for sessile animals which may have a very slow 

reproductive cycle. However, it is unlikely that any 
mining operation will cover 100% of a given area of the sea 
floor; thus, seafloor bands of adequate width should be left 

undisturbed in a mined area to enable the re-establishment 

of deep-sea fauna and flora in those areas where the dredge
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heads have destroyed it. This process of recolonization 

would be quite rapid on a geological timescale. It is 

believed that the biomass of the sessile fauna on the 

deep-sea floor is generally very low, particularly in man

ganese nodule areas and, therefore, the quantitative impact 
of deep-sea mining on the marine flora and fauna should be 
quite small.

1.1.3 Effects of Mining on the Water Column

Another possible result of the disturbance of the 

sediments and their resuspension in the water column is the 

transplantation of spores or other dormant or live forms of 

microorganisms from one area, where they rest in the sedi

ment to another—transported by water currents in the over- 
lying water masses after resuspension from the dredged 

sediments. Initial observations on some viable phytoplankters 

occurring in deep-sea sediments have been described (Malone 
et al., 1973).

After the manganese nodules have been collected from the 
sea floor (with certain quantities of sedimentary material) 
they are transported through the water column to the surface 
mining vessel, either in the buckets of a continuous-line- 

bucket system or in a water stream through a pipeline (e.g., 

airlift). In both modes of transport, some or all of the 

accidentally gathered sediment and near-bottom water may be 

discharged either at the surface or at intermediate depths 

in the water column. The effect of these discharges at the 

surface has been measured or forecast (Amos et: al. , 1972).

To date, there is no information concerning the rate of
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sedimentation of discharged particulate matter. We have 
some information concerning the influence of deep-sea sedi 

ment on the productivity of waters in the euphotic zone.
The influence of dissolved nutrients from interstitial water, 

or from near-bottom water, on the chemical composition of 

the overlying water column can be calculated from the rate 
of mixing and the fate of near-bottom water at the time of 

discharge, as well as by the salinity and temperature of the

receiving water mass.
1.1.4 Additional Systematic Factors of

Environmental Interest

A mining rate of 5000 metric tons per day 

appears to be a reasonable model for analysis of future ocean 
mining systems in terms of viable economies and for use in 

determination of loads placed upon the environment by ocean 
miners. This rate requires the handling of 1.5 x 10^

metric tons of raw material per 300-day year. The handling 

and transport loads must be moved from the sea floor, up 
the nodule—transfer conduit, stowed aboard ship, ultimately 
transported to shore, offloaded from a barge (or the mining 

ship), and land-transported to a shore-based processing 
plant. Since the nodules, as recovered from the ocean floor, 

are 30% entrained water (by weight), there may be reduced 
tonnage rates for handling as drying occurs, this lower limit 

being 4.5 x 105 metric tons/year of the nodules, completely 

dried. The amount of water transported from the ocean floor 
for a hydraulic lift system can be computed using the rule 

of thumb of a maximum of 20% solids concentration, or four
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times the nodule tonnage rate which is 6 x 10^ metric tons 

of sea water per 300-day year. Excess water will likely be 

discharged at depths of 1000 to 3000 ft below the surface, 

depending upon the sensitivity of the water-column ecology 

to this function.

The processing and extractive metallurgy of manganese 
nodules at sea, and the discharge of waste materials resulting 

from this processing, could be far more dangerous unless 

adequate precautions are taken. However, most major concerns 
involved in the development of manganese nodules have deter

mined that, at least, for first-generation plants, economical 

processing can only be accomplished ashore (Cardwell, 1973). 

The principal reasons for this are that the reagent trans

portation costs will be equal to, or greater than, the nodule 

transport costs, and problems of waste disposal and envi

ronmental protection will be much greater at sea than on land. 
However, should all processing take place at sea, the care 
taken in waste disposal resulting from metallurgical proces

ses should be, at the very least, equal to that of land- 

based operations of a similar nature. We should have learned 

the lesson that we cannot willfully damage our environment 
without jeopardizing the quality of life.

Consideration should also be given to the possibility of 

introducing foreign species of phytoplankton to the surface 

and upper water column—species which were dormant in the 

sediments but which may revive when discharged into suitable 

temperature, light and oxygen conditions.
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From the admittedly incomplete results of published work 

to date, it appears that the effect of the mining operation 

and of the vertical transport of manganese nodules, sediment 

and near-bottom water to the surface, and its discharge at 
the surface or at intermediate levels in the water column, 

is small (Roels et: al. , 1973).
1.2 Field Work in Manganese Nodule Mining Impact 

Studies
1.2.1 Outline of Concepts

The concepts for studying the environmental 
impact of deep-ocean mining developed by our group have 

been to monitor a potential mining area or specific mining 
site before, during and after mining operations are carried 

out. All parameters of the water column and ocean floor 
that may be influenced by mining must be measured at each 

site. These include the physical, chemical and biological 
properties of the entire water column, local bottom topo

graphy, and the sedimentology and benthos of the ocean floor 
and substrate, and trace metal concentrations in the water 

column and sediment. Where the near-surface waters may be 
affected by mining effluent, seasonal variations in the 

upper water column must be studied. At each location, an 
area is monitored that is comparable in size to the area 

that a mining ship will exploit in the course of a few years' 

(Ocean Science News, 1974). Station locations within the study 
areas are chosen to allow the local dynamic topography of 
the water column to be computed from the hydrographic obser

vations, while at the same time obtaining adequate coverage
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of bottom samples and photographs to describe the benthos 

and sedimentology. Accurate mapping of the nodule coverage, 
benthos and sedimentology in a limited area at the center 

of each study site is obtained using a bottom-mounted 
Acoustically Transponding Navigation (ATNAV) system. The 

ATNAV also permits the direct monitoring of dredging ope
rations and their effect on the ocean floor by the use of 

a submersible transponder that is first attached to the 

dredge-head and afterwards to a bottom camera so that it 
can be maneuvered to cross the dredge path several times.

The recoverable bottom-mounted beacons also serve as release 
devices for mooring arrays of current meters placed at dif

ferent heights above the sea floor. These give us a pro
file of bottom currents above the bottom, essentially at 

one location which will aid in understanding the disposition 

of sediment stirred up by mining operations.

1.2.2 Previous Field Work Done by the LDGO/CUNY
Group on Environmental Aspects of Deep-

Ocean Mining
August 1970: Monitored effects of surface- 

discharged effluent from the experimental mining vessel 
DEEPSEA MINER of Deepsea Ventures, Inc., during a pilot 

mining test on the Blake Plateau.
July 1972: Baseline study in a manganese

nodule province in the North Atlantic Ocean from the R/V 

CONRAD.
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August-September 1972: Monitored effects of 

experimental continuous-line-bucket (CLB) dredging in equa 

torial Pacific Ocean from R/V KANA KEOKI.
Publications arising from our work are listed

in section 1.4.
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