NOAA DR ERL MESA-2

÷ -

NOAA Data Report ERL MESA-2

U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION Environmental Research Laboratories

Deep Ocean Mining Environmental Study Cruise Report on MOANA WAVE Cruise 74-2: April-May 1974

O.A. ROELS A.F. AMOS C. GARSIDE T.C. MALONE G.E. RICE A.Z. PAUL

Marine EcoSystems Analysis Program Office BCULDER, COLORADO July 1975

QH 541.5 .53 U55 No.2

NOAA Data Report ERL MESA-2

DEEP OCEAN MINING ENVIRONMENTAL STUDY

CRUISE REPORT ON MOANA WAVE CRUISE 74-2: APRIL-MAY 1974

O.A. Roels A.F. Amos C. Garside T.C. Malone G.E. Rice A.Z. Paul

Marine EcoSystems Analysis Program Office Boulder, Colorado July 1975

LIBRARY

AUG 2 0 2008

National Oceanic & Atmospheric Administration U.S. Dept. of Commerce

UNITED STATES DEPARTMENT OF COMMERCE Rogers C.B. Morton, Secretary

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION Robert M. White, Administrator

Enviroimental Research Laboratories Wilmot N. Hess, Director

THE ENVIRONMENTAL IMPACT OF DEEP-SEA MINING

CRUISE REPORT ON MOANA WAVE CRUISE 74-2 : APRIL-MAY 1974

for work supported by

Environmental Research Laboratories NATIONAL OCEANIC & ATMOSPHERIC ADMINISTRATION U.S. Department of Commerce Boulder, Colorado 80302

under contracts 03-3-022-144 and 03-5-022-27

O.A. Roels (Principal Investigator and Co-Chief Scientist) A.F. Amos (Co-Chief Scientist) C. Garside T.C. Malone G.E. Rice A.Z. Paul

of

University Institute of Oceanography The City University of New York and Lamont-Doherty Geological Observatory of Columbia University Palisades, New York 10964

Report Edited by A.F. Amos, L.M. Amos and A.Z. Paul

March 1, 1975

ii

FOREWORD

This document presents basic data to be used in assessing the environmental impacts of deep-sea mining for nodules containing manganese, copper, nickel, and cobalt. It supplements information presented in NOAA Technical Report ERL 290-0D 11, "The Environmental Impacts of Deep-Sea Mining. Progress Report," May 1973. Originals of photographs reproduced herein are available for inspec-

Originals of photographs reproduced herein are available for inspection at the Marine EcoSystems Analysis Program Office (MESA), ERL, Boulder, CO., 80302.

PIM 0

Charles G. Gunnerson Director, MESA Program Office

DISCLAIMER

The Environmental Research Laboratories do not approve, recommend, or endorse any proprietary product or proprietary material mentioned in this publication. No reference shall be made to the Environmental Research Laboratories or to this publication furnished by the Environmental Research Laboratories in any advertising or sales promotion which would indicate or imply that the Environmental Research Laboratories approve, recommend, or endorse any proprietary product or proprietary material mentioned herein, or which has as its purpose an intent to cause directly or indirectly the advertised product to be used or purchased because of this Environmental Research Laboratories publication.

CRUISE REPORT

MOANA WAVE CRUISE 74-2 : APRIL-MAY 1974

Lis	st of	Figure	S	xi		
Lis	st of	Tables		xiii		
Ac}	knowl	edgemen	ts	xiv		
1	INTR	ODUCTIO	N	1		
	1.1	Enviro	nmental Protection and Safety	l		
		1.1.1	Mining Methods	3		
		1.1.2	Effects of Mining on the Sea Floor and Near-Bottom Water Masses	6		
		1.1.3	Effects of Mining on the Water Column	8		
		1.1.4	Additional Systematic Factors of Environmental Interest	9		
	1.2		Work in Manganese Nodule Mining Studies	11		
		1.2.1	Outline of Concepts	11		
		1.2.2	Previous Field Work Done by the LDGO/ RF-CUNY Group on Environmental Aspects of Deep-Ocean Mining	12		
	1.3	Refere	nces	13		
	1.4	Public	ations Arising from Our Work	14		
2	CRUIS	SE PLAN	AND OPERATIONS	17		
	2.1	Areas of Research				
	2.2	Participants				
	2.3	Equipment and Procedures				
	2.4	Summar	y of Measurements Made	30		
	2.5	Naviga	tion	35		

(0)

		2.5.1	General	Navigation		35
		2.5.2	The ATN	AV System		37
	2.6	Bathyr	netry			45
		2.6.1	Precisio	on Depth Re	corders	45
		2.6.2	Digitiz	ing the PDR	Records	46
		2.6.3	Use of t	the Pinger		47
3	RESE	ARCH PF	ROGRAMS AN	ND PROCEDUR	ES	48
	3.1	Ocean	Floor Stu	dies		48
		3.1.1	Sediment	ology		48
			3.1.1.1	Introduct	ion	48
			3.1.1.2	Methods		48
			3.1.1.3	Bulk Prop	erties	52
			3.1.1.4	Reference	5	53
		3.1.2	Benthic	Ecology		54
			3.1.2.1	Introduct:	lon	54
			3.1.2.2	Box Corer	*	54
			3.1.2.3	Small Bio	logical Trawl (SBT)	63
			3.1.2.4	Bottom Pho	tography	63
			3.1.2.5	References	5	72
	3.2	Water (Column St	udies		73
		3.2.1	Introduc	tion		73
		3.2.2	Physical	Oceanograp	hy	81
			3.2.2.1	Introducti	on	81
			3.2.2.2	STD/Rosett	e Package	85
				3.2.2.2.1	Operating Procedures	86
				3.2.2.2.2	Sampling with the Rosette	87
				3.2.2.2.3	Digitizing the STD Data	89

vi

1.53

		3.2.2.2.4	Correcting the STD Data	91
		3.2.2.2.5	Final STD Data	107
	3.2.2.3	Hydrograph:	ic Stations	107
	3.2.2.4	Data Reduc Display	tion, Storage and	108
		3.2.2.4.1	Introduction	108
		3.2.2.4.2	Thermometer Programs	112
		3.2.2.4.3	Salinity Programs	127
		3.2.2.4.4	Data Storage and Display System	134
		3.2.2.4.5	Miscellaneous Programs	136
		3.2.2.4.6	Appendices I-X	138
	3.2.2.5	XBT Program	n	153
	3.2.2.6	References		153
3.2.3	Chemical	Oceanograp	ny	155
	3.2.3.1	Introductio	on	155
	3.2.3.2	Alkalinity Oxygen	and Dissolved	156
	3.2.3.3	Nutrient De	etermination	156
	3.2.3.4	Nutrient Da	ata Reduction	160
	3.2.3.5	Trace Meta	ls	162
	3.2.3.6	References		163
3.2.4	Biologica	al Oceanogra	aphy	164
	3.2.4.1	Introductio	on	164
	3.2.4.2	Primary Pro Standing C:	oductivity and rop	164
	3.2.4.3	Enrichment	Study	165
	3.2.4.4	Taxonomy		166

FI.

	3.2.5	Suspende	ed Particula	te Material	168
		3,2.5.1	Introducti	on	168
		3.2.5.2	Nephelomet	ry	168
			3.2.5.2.1	Introduction	168
			3.2.5.2.2	Procedures	174
			3.2.5.2.3	Data Reduction	175
			3.2.5.2.4	References	176
		3.2.5.3	Particulat	e Dry Weight	179
			3.2.5.3.1	Introduction	179
			3.2.5.3.2	Procedures	179
		3.2.5.4	Carbon and	Nitrogen Analysis	180
			3.2.5.4.1	Introduction	130
			3.2.5.4.2	Procedures	180
	3.2.6	Bottom C	urrents		181
		3.2.6.1	Current Me	ters	181
			3.2.6.1.1	Deployment	181
			3.2.6.1.2	Recovery of Short- Term Arrays	187
			3.2.6.1.3	Recovery of Long- Term Arrays	188
		3.2.6.2	Bottom Phot	cographs	195
THE I	DATA				196
4.1	Ocean 1	Floor Data	<u>a</u>		197
	4.1.1	Navigatio	on and Bathy	metry Data	198
	4.1.2	ATNAV Dat	a		251
	4.1.3	Sedimento	ology Data		257
		4.1.3.1	Box Core Ph	otographs	258
		4.1.3.2	Vane Shear	Measurements	264
		4.1.3.3	Physical Pr	operties	266

4

(8

	4.1.4	Benthic	Ecology Data	272	
		4.1.4.1		position of Box Frawls (SBTs)	273
		4.1.4.2	Photographi	lc Data	275
			4.1.4.2.1	Summary of Orga- nisms Identified in Bottom Photos	n 276
			4.1.4.2.2	Detailed Listing of Organisms Iden- tified in Bottom Photos	278
			4.1.4.2.3	Densities of Large Epibenthic Orga- nisms Identified at at each Camera	t
				Station	286
			4.1.4.2.4	Bottom Photographs	288
. 2	Water	Column Dat	ta		848
	4.2.1	STD Data			849
		4.2.1.1	Temperature Profiles	e, Salinity	850
		4.2.1.2	Sigma-T, Sc Profiles	ound Velocity	874
		4.2.1.3	Standard Le	vel Listings	896
		4.2.1.4	Observed Le	vel Listings	920
	4.2.2	XBT Data			935
	4.2.3	Chemical	Data		964
		4.2.3.1	Observed Le	vel Listings	965
		4.2.3.2	Int@rpolate Listings	d Standard Level	978
		4.2.3.3	Temperature Profiles	, Salinity	990
		4.2.3.4	Oxygen, Nit	rate Profiles	1002
		4.2.3.5	Silicate, P Profiles		1014

	4.2.3.6	Alkalinity Profiles	1026	
4.2.4	Biologic	al Data	1038	ľ
	4.2.4.1	Primary Productivity	1039	
	4.2.4.2	Incident Radiation	1043	ł
	4.2.4.3	Enrichment Experiment	1045	i
4.2.5	Particul	ate Data	1052	
	4.2.5.1	Nephelometer Profiles	1053	5
	4.2.5.2	Particulate Dry Weight, Carbon, Nitrogen, and C/N Ratios Listings	1055	5
	4.2.5.3	Particulate Carbon, Nitrogen Profiles	1063	3
4.2.6	Current	Meter Data	1075	5
	4.2.6.1	East-West/North-South Component, Period April 27 to May 3, 1974	1076	ò
	4.2.6.2	East-West/North-South Component, Period May 3 to May 9, 1974	1078	3
	4.2.6.3	East-West/North-South Component, Period May 9 to May 10, 1974	1080	l
	4.2.6.4	Speed Histogram	1082	
	4.2.6.5	Vector Distribution	1084	

х

5 APPENDIX

1086

LIST OF FIGURES

Figure	2-1	MOANA WAVE 74-2 station map	13
	2-2	The University of Hawaii's R/V MOANA WAVE showing location of vans and winches on the fantail	25
	2-3	Interior of the chemistry laboratory van	27
	2-4	MOANA WAVE 74-2 cruise track (a,b,c)	38
	2-5	Location of current-meter/ATNAV arrays showing correlation between SATNAV and ATNAV positions	43
Figure	3-1	Sedimentology box-core locations	50
	3-2	Benthic ecology station locations	57
	3-3	Camera locations	59
	3-4	Box corer on deck after removal of core	61
	3-5	The Small Biological Trawl (SBT) on deck after retrieval of approximately 200 kg of nodules	64
	3-6	Nodules with attached epifauna: (a) Acti- narian; (b) egg case; (c) Antipatharian	66
	3-7	Nodules with attached epifauna: (a) Worm tube; (b) Foraminifera	68
	3-8	The EG&G deep-sea camera, strobe and pinger unit	70
	3-9	The STD/Rosette sampler	74
	3-10	Hydrocast locations: (a) STD and water sample stations; (b) water samples only	78
	3-11	Combination station locations	8.3
	3-12	(a) $\Delta S/depth$ curve before offset correction; (b) $\Delta S/depth$ curve after offset correction	93
	3-13	(a) △S/temperature curve; (b) △S/depth after offset and temperature corrections have been applied; (c) △S/depth after offset, temperature and depth corrections have been applied	97

2.1

(11)

3-14	T/temperature curve	103
3-15	D/depth curve	105
3-16	Hewlett-Package Model 9830 keyboard. Numbered keys are referred to in Table 3-7	110
3-17	Modified Lamont-Doherty Geological Obser- vatory nephelometer, showing method of attachment to sea cable	169
3-18	Schematic diagram of LDGO nephelometer optical system	171
3-19	Nephelometer station locations	177
3-20	Schematic of current meter arrays drawn with no vertical exaggeration. A compo- site diagram showing heights of current meters as if in one single array is indi- cated on the right of the figure (four times scale of main diagram)	182
3-21	Configuration of array at location "D"	185
3-22	R/V ALPHA HELIX cruise track during recovery attempts of long-term current- meter arrays (Jan-Feb 1975)	190

XH

LIST OF TABLES

lable	2-1	Areas of investigation: Ocean Floor	20
	2-2	Areas of investigation: Water Column	21
	2-3	Summary of measurements made	31
	2-4	Log	32
	2-5	SATNAV fixes obtained at Pier 18, in Honolulu, Hawaii	36
Table	3-1	Sedimentology sampling station locations (box core)	49
	3-2	Benthic sampling station locations	55
	3-3	Bottom photography station locations	56
	3-4	STD/Hydro station locations	76
	3-5	Combination station locations	82
	3-6	Leakage tests on 12-liter Niskin bottles	90
	3-7	Key to abbreviations used in computer program descriptions	109
	3-8	Organization of program and data files on thermometer program cassette (obtained by pressing TLIST EX on keyboard)	113
	3-9	Protected thermometer index corrections	116
	3-10	Unprotected thermometer index correc- tions	117
	3-11	(a) Output of program ILIST (index cor- rection listings); (b) Output of program ILIST (Q value listings)	119
	3-12	Entering thermometer data	123
	3-13	Output of program THERM 1	125
	3-14	Output of program THERM 2 showing messages and method of data input	130
	3-15	Output of program SALIN 2 showing messages and method of data input	132
	3-16	Deployment plan of current-meter arrays	184

ACKNOWLEDGEMENTS

This project is supported by the National Oceanic and Atmospheric Administration's Environmental Research Laboratory under U.S. Department of Commerce contracts 03-3-022-144 and 03-5-022-27.

In the staging of the cruise and in the preparation of this data report, we are indebted to the following:

Hawaii Institute of Geophysics, University of Hawaii: Dr. James Andrews (deep-sea camera), Captain William Kerr, Frisbee Campbell, the administrative and machine-shop staff at the Marine Expeditionary Facility (Pier 18), Captain Billings, Chief Engineer Kelly, and the crew of the R/V MOANA WAVE.

Equipment for this cruise was generously loaned to NOAA by the U.S. Navy, Coast Guard, National Science Foundation, Lamont-Doherty Geological Observatory, City University of New York, University of Massachusetts, Scripps Institution of Oceanography, Kennecott Exploration, Inc., Summa Corp., Deep Sea Ventures, Inc., The International Nickel Co., and Ocean Resources, Inc.

1 INTRODUCTION

1.1 Environmental Protection and Safety

There is no doubt that environmental considerations and arguments--with or without sound technical basis--will be used in international legal, political and economic deliberations concerning the exploitation of the mineral resources of the sea floor, as has already been the case in the United Nations Seabed Committee.

Several mining tests have already been completed, many more are in preparation and at least one full-scale mining vessel is undergoing sea-trials. The prospect of imminent extensive deep-sea mining requires serious consideration of the environmental impact of this activity, since it could affect the benthic and pelagic environments. It is essential that the environmental implications of manganese-nodule mining from the deep-sea floor be thoroughly understood, evaluated and documented before such mining is attempted on a large scale.

The proposed mining of manganese nodules from the deepocean floor has triggered a perhaps unique collaboration in the United States between the government, mining industry, academic institutions, and public-interest groups to determine the environmental impact of the proposed mining operations before their start. This is in great contrast to other important industrial developments, where environmental concerns have usually only arisen after--sometimes serious--

damage to the environment. By taking preventive action, it should be possible to reduce greatly or completely eliminate potential environmental hazards due to the mining operations.

Collaboration between government, industry and academia to ensure safe deep-sea mining methods could lead to the development of mining techniques with beneficial environmental effects.

The emphasis of this study is on the consideration of the impact of manganese-nodule mining on the marine environment. The metallurgical operations to extract the valuable metals such as copper, nickel and cobalt from manganese nodules should be comparable in their environmental effects to land-based operations of a similar nature. However, if the ore processing takes place at sea, special precautions would have to be taken for the discharge of waste materials. Since secondary land use (including land-based processing plants and tailings disposal sites) and social and demographic patterns affected by marine mining or ore processing are not exclusive problems of deep-sea mining, they are outside the scope of this report. Similarly, the environmental impacts of alternative means of obtaining metal ores and the environmental analysis of the utilization of minerals obtained from the marine environment are not considered here. It is recognized that there will be environmental impact associated with on-shore activities that accompany off-shore mining. Some of these will be associated with the transport of minerals (marine terminals and support facilities, stock-piling of materials, truck movements, etc.) and others will be associated with the processing of the

2

minerals. Assessment of the environmental impacts of both of these types of activities should proceed before there is a move to license full-scale off-shore mining. However, since regulation of this kind of activity falls under the jurisdiction of the coastal states, this work does not address this facet of the off-shore mining operation.

Manganese nodule deposits of current commercial interest lie mainly on top of the sediments covering the ocean bottom underlying oceanic water masses of very low biological productivity; therefore, no deep penetration of the sediments will be required to retrieve them. Manganese nodules are rare in areas where there is rapid sedimentation, e.g., on those parts of the sea floor underlying areas of high biological productivity in the water column, giving rise to rapid sedimentation of biogenic oozes.

The areas to be mined will be limited, therefore, by the distribution of manganese nodules on the ocean floor and by technical and economic factors governing their retrieval from the depths. Our study area, therefore, was located on a relatively flat, sediment-covered part of the ocean floor with a high density of manganese nodules on, or very close to, the surface of the sediment.

1.1.1 Mining Methods

In the mining operation, the manganese nodules are collected from the ocean floor, usually from great depths, and transported through the water column to a surface vessel. The collection of manganese nodules will result in the

removal and redistribution of sediments and benthic organisms on the ocean floor. In all mining operations, it is likely that there will be considerable resuspension of sedimentary materials in the near-bottom waters. During the mining operation, a sediment plume will be generated in and around the mining head which will settle out in the general area of the sea bed which has been mined. The amount of scatter of the particles will depend upon the design of the mining head, its velocity, Stoke's Law, and prevailing ocean currents.

An example of the maximum amount of sea-bed soil which may be disturbed as a result of ocean mining can be computed using the following assumptions:

Nodule concentration = 2 lbs/ft^2

Mining rate	= 5000 tons/day
Mining swath	= 50 ft
Depth of swath	= 4 inches
Velocity	= 1.25 ft/sec

This gives, on a daily basis, a soil pick-up of 1.7×10^{6} ft³, along a 19-mile swath of 50 ft width. For a 30(-day year, this equals a 1.4×10^{7} m³ soil disturbance. This yearly rate is approximately equal to slumping due to turbidity currents at the mouth of the world's large rivers when the rivers are flooding and wave-stirring is at a maximum. For example, the Mississippi River Delta sediment transfer is estimated to be 2×10^{8} m³/yr (Shepard, 1973).

The self-propelled mining equipment has an interaction with the sea bed to a much greater extent than towed equipment.

The self-propelled approach suggests some form of mobility and trafficability which, in turn, must consider wheels, tracks, or other forms of propulsion. This disturbance of the sea bed is probably more uniform with a self-propelled approach than with a towed dredge, but also is more likely to disturb a greater volume of sea bed when both are operating properly; this is primarily due to swath width and burial depth of the propulsion equipment. As opposed to nodule pick-up and mud removal, the mobility function will compress the sea bed along with stirring up particles. Using the assumptions previously given, i.e., that of a 5000-tons/day unit traveling 19 miles/day, and further assuming:

One 72-inch wide track per side

Burial depth of 36 inches

the amount of disturbed soil per day is 7×10^6 ft³, or 2.1 x 10^9 ft³/year for a 300-day year.

All of the different techniques under consideration for nodule mining will try to avoid as much as possible the retrieval of sediments with the nodules. The continuousline-bucket (CLB) system tested in the Pacific in 1971 and 1972, used buckets of 40-cm depth with a maximum penetration into the sediment of about 20 cm, but probably much less in practice (Masuda, Cruickshank and Mero, 1971). The other systems propose to utilize bottom-gathering devices connected to hydraulic or airlift pumping systems to transport the nodules to the surface through a pipeline (Welling, 1972; Garland and Hagerty, 1972). All of these devices have com-

ponents which contact the ocean bottom to make a first separation of the nodules from the surrounding sediment. This first separation is achieved by a chute with water jets, heavy spring-rake tines, a radial tooth roller, harrow blades and water jets, or spaced comb teeth. Many of the machine concepts employ adjustable collecting elements so that changes can be made during the mining operation to accommodate variations in the nodule deposit and sediment characteristics. A second important feature of all of the collecting devices is a controlled digging depth into the ocean bottom, as interest is usually centered within the upper few inches of the sediment.

1.1.2 Effects of Mining on the Sea Floor

and Near-Bottom Water Mass

It is obviously in the interest of a mining operation to separate nodules from sediment as well as possible on the ocean floor and to disturb the sediment as little as possible where compatible with efficient collection of the nodules. However, it is equally obvious that significant disturbance of the sediment and the sessile benthic organisms, which cannot escape the oncoming dredge, will occur. A cloud of sediment will undoubtedly be stirred up in the near-bottom water layers. The distribution and resedimentation of the stirred-up particles will obviously be governed by their density and other sedimentation characteristics as well as by the near-bottom currents. This resuspension of sedimentary materials will influence the near-bottom water mass, certain areas of the ocean floor

6

from which sediments have been removed, as well as other areas where redeposition of the sediment will occur.

The near-bottom water mass may retain in solution certain compounds leached out from the sediment or from the interstitial water. For instance, in manganese-nodule areas, it is conceivable that the trace-metal content of the nearbottom water could be increased by the resuspension of sediment. This enrichment of the near-bottom water in certain compounds may have stimulatory or inhibitory effects on organisms living in the deep ocean near the sea floor. On the whole, important effects seem unlikely, both in view of the relatively low density of the near-bottom prowlers and the fact that the sedimentary material arrived on the sea floor as a result of natural sedimentation processes. Tt has been argued that the redistribution of sediment on the ocean floor resulting from natural phenomena exceeds by many orders of magnitude on a worldwide scale, any disturbances caused by all the dredges ever likely to be utilized in deep-sea mining (Welling, 1972). However, it remains equally clear that local disturbance of sediment may have a certain impact on the deep-sea fauna and flora. This is particularly the case for sessile animals which may have a very slow reproductive cycle. However, it is unlikely that any mining operation will cover 100% of a given area of the sea floor; thus, seafloor bands of adequate width should be left undisturbed in a mined area to enable the re-establishment of deep-sea fauna and flora in those areas where the dredge

heads have destroyed it. This process of recolonization would be quite rapid on a geological timescale. It is believed that the biomass of the sessile fauna on the deep-sea floor is generally very low, particularly in manganese nodule areas and, therefore, the quantitative impact of deep-sea mining on the marine flora and fauna should be quite small.

1.1.3 Effects of Mining on the Water Column

Another possible result of the disturbance of the sediments and their resuspension in the water column is the transplantation of spores or other dormant or live forms of microorganisms from one area, where they rest in the sediment to another—transported by water currents in the overlying water masses after resuspension from the dredged sediments. Initial observations on some viable phytoplankters occurring in deep-sea sediments have been described (Malone et al., 1973).

After the manganese nodules have been collected from the sea floor (with certain quantities of sedimentary material) they are transported through the water column to the surface mining vessel, either in the buckets of a continuous-linebucket system or in a water stream through a pipeline (e.g., airlift). In both modes of transport, some or all of the accidentally gathered sediment and near-bottom water may be discharged either at the surface or at intermediate depths in the water column. The effect of these discharges at the surface has been measured or forecast (Amos <u>et al</u>., 1972). To date, there is no information concerning the rate of

sedimentation of discharged particulate matter. We have some information concerning the influence of deep-sea sediment on the productivity of waters in the euphotic zone. The influence of dissolved nutrients from interstitial water, or from near-bottom water, on the chemical composition of the overlying water column can be calculated from the rate of mixing and the fate of near-bottom water at the time of discharge, as well as by the salinity and temperature of the receiving water mass.

1.1.4 Additional Systematic Factors of

Environmental Interest

A mining rate of 5000 metric tons per day appears to be a reasonable model for analysis of future ocean mining systems in terms of viable economies and for use in determination of loads placed upon the environment by ocean This rate requires the handling of 1.5 x 10^6 miners. metric tons of raw material per 300-day year. The handling and transport loads must be moved from the sea floor, up the nodule-transfer conduit, stowed aboard ship, ultimately transported to shore, offloaded from a barge (or the mining ship), and land-transported to a shore-based processing plant. Since the nodules, as recovered from the ocean floor, are 30% entrained water (by weight), there may be reduced tonnage rates for handling as drying occurs, this lower limit being 4.5 x 10^5 metric tons/year of the nodules, completely dried. The amount of water transported from the ocean floor for a hydraulic lift system can be computed using the rule of thumb of a maximum of 20% solids concentration, or four

times the nodule tonnage rate which is 6 x 10⁶ metric tons of sea water per 300-day year. Excess water will likely be discharged at depths of 1000 to 3000 ft below the surface, depending upon the sensitivity of the water-column ecology to this function.

The processing and extractive metallurgy of manganese nodules at sea, and the discharge of waste materials resulting from this processing, could be far more dangerous unless adequate precautions are taken. However, most major concerns involved in the development of manganese nodules have determined that, at least for first-generation plants, economical processing can only be accomplished ashore (Cardwell, 1973). The principal reasons for this are that the reagent transportation costs will be equal to, or greater than, the nodule transport costs, and problems of waste disposal and environmental protection will be much greater at sea than on land. However, should all processing take place at sea, the care taken in waste disposal resulting from metallurgical processes should be, at the very least, equal to that of landbased operations of a similar nature. We should have learned the lesson that we cannot willfully damage our environment without jeopardizing the quality of life.

Consideration should also be given to the possibility of introducing foreign species of phytoplankton to the surface and upper water column--species which were dormant in the sediments but which may revive when discharged into suitable temperature, light and oxygen conditions.

From the admittedly incomplete results of published work to date, it appears that the effect of the mining operation and of the vertical transport of manganese nodules, sediment and near-bottom water to the surface, and its discharge at the surface or at intermediate levels in the water column, is small (Roels et al., 1973).

1.2 Field Work in Manganese Nodule Mining Impact Studies

1.2.1 Outline of Concepts

The concepts for studying the environmental impact of deep-ocean mining developed by our group have been to monitor a potential mining area or specific mining site before, during and after mining operations are carried out. All parameters of the water column and ocean floor that may be influenced by mining must be measured at each site. These include the physical, chemical and biological properties of the entire water column, local bottom topography, and the sedimentology and benthos of the ocean floor and substrate, and trace metal concentrations in the water column and sediment. Where the near-surface waters may be affected by mining effluent, seasonal variations in the upper water column must be studied. At each location, an area is monitored that is comparable in size to the area that a mining ship will exploit in the course of a few years' (Ocean Science News, 1974). Station locations within the study areas are chosen to allow the local dynamic topography of the water column to be computed from the hydrographic observations, while at the same time obtaining adequate coverage

of bottom samples and photographs to describe the benthos and sedimentology. Accurate mapping of the nodule coverage, benthos and sedimentology in a limited area at the center of each study site is obtained using a bottom-mounted Acoustically Transponding Navigation (ATNAV) system. The ATNAV also permits the direct monitoring of dredging operations and their effect on the ocean floor by the use of a submersible transponder that is first attached to the dredge-head and afterwards to a bottom camera so that it can be maneuvered to cross the dredge path several times. The recoverable bottom-mounted beacons also serve as release devices for mooring arrays of current meters placed at different heights above the sea floor. These give us a profile of bottom currents above the bottom, essentially at one location which will aid in understanding the disposition of sediment stirred up by mining operations.

1.2.? Previous Field Work Done by the LDGO/CUNY Group on Environmental Aspects of Deep-Ocean Mining

August 1970: Monitored effects of surfacedischarged effluent from the experimental mining vessel DEEPSEA MINER of Deepsea Ventures, Inc., during a pilot mining test on the Blake Plateau.

July 1972: Baseline study in a manganese nodule province in the North Atlantic Ocean from the R/V CONRAD.

August-September 1972: Monitored effects of experimental continuous-line-bucket (CLB) dredging in equatorial Pacific Ocean from R/V KANA KEOKI.

Publications arising from our work are listed in section 1.4.

1.3 References

- Amos, A.F., C. Garside, K.C. Haines and O.A. Roels 1972. Deep-ocean mining: some effects of surface-discharged deep water. In: <u>Papers from a Conference on Ferro-</u> <u>manganese Deposits on the Ocean Floor</u>, D.R. Horn (ed.) IDOE/NSF, Washington, D.C., pp. 271-281.
- Cardwell, P.H. 1973 Extractive metallurgy of ocean nodules. Mining Convention/Environmental Show., American Mining Congress, Sept. 9-12, Denver, Co.
- Garland, C. and R. Hagerty 1972 Environmental planning considerations for deep-ocean mining. Eighth Ann. Marine Technology Society Mtg., Sept. 11-13, Washington, D.C.
- Malone, T.C., C. Garside, O.R. Anderson and O.A. Roels 1973 The possible occurrence of photosynthetic microorganisms in deep-sea sediment of the North Atlantic. J. Phycol. 9:482-488.
- Masuda, Y., M.J. Cruickshank and J.L. Mero 1971. Continuous bucket-line dredging at 12,000 feet. Offshore Technology Conference, April, p. 1410.

Ocean Science News 1974 November 15, vol. 16, no. 46.

- Roels, O.A., A.F. Amos, O.R. Anderson, C. Garside, K.C. Haines, T.C. Malone, A.Z. Paul, G.E. Rice 1973 Environmental Impact of Deep-Sea Mining, NOAA Tech. Rept. ERL-290-OD-11, U.S. Department of Commerce, Boulder, Co., U.S. Government Printing Office, Washington, D.C. 20402, 185 pp.
- Shepard, F.P. 1973 <u>Submarine Geology</u> (3rd Edition), New York: Harper and Row.
- Welling, C.G. 1972 Some environmental factors associated with deep-ocean mining. Eighth Ann. Marine Technology Society Mtg., Sept. 11-13, Washington, D.C.

1.4 Publications Arising from Our Work

- Roels, O.A., A.F. Amos, C. Garside and K.C. Haines 1972 Effects of surface-discharged deep-sea mining effluent. Am. Soc. Limnol. Oceanogr., 35th Ann. Mtg., March 19-22, Tallahassee, Fla.
- Amos, A.F., C. Garside, K.C. Haines and O.A. Roels 1972 Effects of surface-discharged deep-sea mining effluent. <u>Mar. Tech. Soc. J. 6(4):40-45</u>.
- Amos, A.F., C. Garside, K.C. Haines and O.A. Roels 1972
 Deep-ocean mining: some effects of surfacedischarged deep water, In: Papers from a Conference
 on Ferromanganese Deposits on the Ocean Floor,
 D.R. Horn (ed.), IDOE/NSF, Washington, D.C.,
 pp. 271-281.
- Roels, O.A., A.F. Amos, C. Garside and T.C. Malone 1972 The environmental impact of deep-sea mining. Pre-

prints, Eighth Ann. Conf. & Expos., Marine Technology Society, Sept. 11-13, Washington, D.C., pp. 369-373.

- Malone, T.C., C. Garside, A.Z. Paul and O.A. Roels 1973 Potential environmental impact of manganese nodule mining in the deep sea. Offshore Technology Conf., April 29-May 2, Houston, Tx., OTC 1735.
- Roels, O.A., A.F. Amos, C. Garside, K.C. Haines, T.C. Malone, A.Z. Paul and G.E. Rice 1972 Environmental impact of two manganese nodule mining tests, In: <u>Proc. Symp</u>. <u>Manganese Nodule Deposits in the Pacific</u>, Oct. 16-17, Univ. Hawaii, Honolulu, Hawaii, pp. 129-146.
- Amos, A.F., C. Garside, R.D. Gerard, S. Levitus, T.C. Malone, A.Z. Paul and O.A. Roels 1973 Study of the impact of manganese nodule mining on the sea floor and water column, In: <u>Inter-University Program of</u> <u>Research on Ferromanganese Deposits of the Ocean</u> <u>Floor, Phase I Report</u>, NSF/IDOE Seabed Assessment Program, Washington, D.C., pp. 221-264.
- Roels, O.A. 1973 Environmental impact of deep-ocean mining, In: Proc. 1973 Mining Convention/Environmental Show Sept. 9-12, Denver, Co., Am. Mining Congr., Ring Bldg., Washington, D.C. 20036.
- Malone, T.C., C. Garside, R. Anderson and O.A. Roels 1973 The possible occurrence of photosynthetic microorganisms in deep-sea sediments of the North Atlantic. J. Phycol. 9(4):482-488.

Roels, O.A., A.F. Amos, O.R. Anderson, C. Garside, K.C. Haines, T.C. Malone, A.Z. Paul and G.E. Rice 1973 <u>The Environmental Impact of Deep-Sea Mining</u>, Progress Report, NOAA Tech. Rept. ERL 29-OD-11, U.S. Department of Commerce, Boulder, Co., 185 pp.

- Roels, O.A. 1974 A suggested procedure to ensure the safe development of deep-sea mining. Conf. Preprints, Tenth Ann. Conf. Marine Technology Society, Sept. 23-25, Washington, D.C.
- Roels, O.A. 1974 The environmental impact of deep-sea mining: A suggested procedure to ensure the safe development of deep-sea mining. <u>2nd Internatl</u>. <u>Collog. Exploit. Oceans</u>, Bordeaux, France, Oct. 1-4, Vol. 4, Bx-203, 7 pp.
- Amos, A.F., S.C. Daubin, Jr., C. Garside, T.C. Malone, A.Z. Paul, G.E. Rice and O.A. Roels 1974 The Environmental impact of manganese-nodule mining: Preliminary report on a cruise to study baseline conditions in a manganese nodule province. <u>2nd</u> <u>Internatl. Collog. Exploit. Oceans</u>, Bordeaux, France, Oct. 1-4, Vol. 5 (in press).
- Amos, A.F., S.C. Daubin, Jr., C. Garside, T.C. Malone, A.Z. Paul, G.E. Rice and O.A. Roels 1975 Report on a cruise to study baseline conditions in a manganese nodule province. Offshore Technology Conf., May 5-8, Houston, Tex., OTC #2162.